COASTAL AND MARINE ECOSYSTEMS MAPPING: Submerged Vegetation/Seagrass Habitat.

Lawrence O. Okello¹, Antony Ndubi¹, Wondimagegn T. Beshah¹, Robinson Mugó¹, Hussein Farah¹, Laurent V. Matoroni¹, Ashutosh Limaye², Africa Flores³, Gwendolyn Artis³, Daniel Irwin²


1. Rationale
The Seagrass ecosystem provides shelter and food to numerous marine species in addition to having a key functional role in maintaining equilibrium, such as sediment stabilization. However, this ecosystem is increasingly under threat from effects of, among others, climate change (e.g. erratic and torrential rains leading to flooding and massive erosion/deposition), marine pollution (dumping of domestic and industrial waste), over exploitation of living marine resources and coastal habitat loss. This is despite national and international efforts to address these problems.

2. Objectives
To map the general Seagrass covers along the inter-tidal zone of the Eastern Africa coastlines using earth observation data and determine:

- Location of Seagrass along the coast,
- Extent of the covers and
- Condition of Seagrass in the region.

3. Approach/Project Activities
- Geospatial data layers of the current Seagrass bed covers in Kenya, Tanzania, Mozambique, and Madagascar coastlines have been derived from medium resolution (30m) Landsat-8 OLI Sensor imagery using water column correction and classification techniques
- Stakeholder engagement to establish the current status of Seagrass mapping and determine gaps in each country
- Products validation done through selective field site verification in each country
- Capacity building

4. Earth Observations and Other Inputs
- Landsat-8 OLI data
- Global Position System (GPS) data
- National Administrative Boundary files

5. Results
- Increased availability of regionally consistent seagrass coverage data vital for coastal ecosystem resource conservation
- Improved access to seagrass baseline data to marine ecologist in West Indian Ocean region on SERVIR visualization tool
- Enhanced capacity of collaborating institutions to utilize earth observation data in mapping seagrass

6. Outcomes/Anticipated Impacts
- Digital imagery database,
- Geospatial Seagrass layers for the four countries,
- Seagrass map products for the four countries
- Visualization tool with querying capability
- Skills transfer to stakeholders/collaborating Institutions

7. Project Partners/End Users
- Kenya Marine and Fisheries Research Institute (KMFRI)
- Coastal & Marine Resources Development (COMRED)
- University of Dar es Salaam - Institute of Marine Sciences (UDSM-IMS), Tanzania
- Tanzania Fisheries Research Institute (TAFIRI) - Dar es Salaam
- University Eduardo Mondlane (UEM) - Department of Biological Sciences, Mozambique
- Center for Sustainable Development of Coastal Zones (CDS-ZC) - Ministry of Land, Environment and Rural Development, Mozambique
- Wide World Fund for Nature (WWF) - MIWOPC, Madagascar.
- Madagascar National Parks (MNP) - Nosy Hara.
- Western Indian Ocean Marine Science Association (WIOOMSA)

---

Figure 1: Healthy Seagrass is a source of food and shelter to numerous aquatic species as well as Blue Carbon storage.

Figure 2: Stressed or degraded Seagrass habitats negatively impact on marine ecosystem balance.

Figure 3: Data and Methods

Figure 4: Sample Landsat-8 OLI Image.

Figure 5: GPS handset

Figure 6: Individual assessment creation and gaps determination workshop

Figure 7: Sample Seagrass Country Map

Figure 8: Sample Seagrass Country Map

Figure 9: Sample Seagrass Country Map

Figure 10: Sample Seagrass Country Map

Figure 11: Sample Seagrass Country Map

Figure 12: Project partners and end users.